How To Guides, Resources, Getting Started
15 min read
Distributed tracing has become essential for understanding the performance and behavior of modern microservices architectures. As applications become more complex with multiple services communicating across different environments, traditional logging and metrics alone are insufficient for debugging performance issues and understanding request flows. OpenTelemetry provides a standardized approach to distributed tracing that works across different programming languages, frameworks, and observability backends.
This comprehensive guide will walk you through implementing distributed tracing with OpenTelemetry, from basic setup to advanced configuration and integration with Logit.io. We'll cover the core concepts, practical implementation steps, best practices, and real-world scenarios to help you build robust observability into your applications.
Contents
- Understanding Distributed Tracing Fundamentals
- OpenTelemetry Architecture Overview
- Setting Up OpenTelemetry in Your Environment
- Instrumenting Applications with OpenTelemetry
- Advanced OpenTelemetry Configuration
- Integrating with Logit.io for Distributed Tracing
- Best Practices for Distributed Tracing
- Real-World Implementation Scenarios
- Monitoring and Alerting with Traces
- Conclusion
Understanding Distributed Tracing Fundamentals
Before diving into implementation, it's crucial to understand the core concepts of distributed tracing and how OpenTelemetry standardizes these concepts across different platforms and languages.
Core Concepts
Distributed tracing follows several key concepts that help you understand request flow through your system:
- Trace: A complete request journey through your distributed system, containing all spans from start to finish
- Span: A unit of work within a trace, representing an operation like an HTTP request, database query, or function call
- Span Context: Information that identifies a span and its relationship to other spans in the trace
- Baggage: Key-value pairs that can be propagated across service boundaries for correlation
- Sampling: The process of deciding which traces to collect and send to the observability backend
OpenTelemetry provides a vendor-neutral, language-agnostic specification for distributed tracing that ensures compatibility across different observability platforms and tools.
Benefits of Distributed Tracing
Implementing distributed tracing provides several key benefits:
- Request flow visualization: See exactly how requests flow through your microservices
- Performance bottleneck identification: Identify slow operations and bottlenecks in your system
- Error correlation: Correlate errors across multiple services to understand root causes
- Dependency mapping: Understand service dependencies and communication patterns
- Capacity planning: Use trace data to understand resource usage and plan capacity
- Debugging efficiency: Reduce time to resolution for complex issues
OpenTelemetry Architecture Overview
OpenTelemetry provides a comprehensive observability framework that includes distributed tracing, metrics, and logs. Understanding the architecture helps you make informed decisions about your implementation.
OpenTelemetry Components
The OpenTelemetry ecosystem consists of several key components:
1. OpenTelemetry SDK
The SDK provides the core functionality for instrumenting your applications:
- API: Defines the interfaces for creating traces, spans, and metrics
- SDK: Implements the API and provides configuration options
- Instrumentation Libraries: Pre-built instrumentation for common frameworks and libraries
2. OpenTelemetry Collector
The Collector is a vendor-agnostic implementation for receiving, processing, and exporting telemetry data:
- Receivers: Accept data from various sources (OTLP, Jaeger, Zipkin, etc.)
- Processors: Transform, filter, and enrich telemetry data
- Exporters: Send data to various backends (Logit.io, Jaeger, Zipkin, etc.)
- Extensions: Provide additional functionality like health monitoring
3. OpenTelemetry Protocol (OTLP)
OTLP is the standard protocol for sending telemetry data between OpenTelemetry components:
- Language agnostic: Works across all supported programming languages
- Efficient: Optimized for high-throughput scenarios
- Extensible: Supports custom attributes and metadata
Setting Up OpenTelemetry in Your Environment
Before implementing distributed tracing, you need to set up the OpenTelemetry infrastructure in your environment. This includes installing the OpenTelemetry Collector and configuring it to work with Logit.io.
Installing OpenTelemetry Collector
The OpenTelemetry Collector can be installed in several ways depending on your environment:
Docker Installation
For containerized environments, use the official Docker image:
# Pull the latest OpenTelemetry Collector image docker pull otel/opentelemetry-collector:latest
Create a configuration file
cat > otel-collector-config.yaml << EOF receivers: otlp: protocols: grpc: endpoint: 0.0.0.0:4317 http: endpoint: 0.0.0.0:4318
processors: batch: timeout: 1s send_batch_size: 1024 memory_limiter: check_interval: 1s limit_mib: 1500
exporters: otlp: endpoint: https://your-logit-endpoint:4317 headers: authorization: "Bearer your-logit-api-key" tls: insecure: false
service: pipelines: traces: receivers: [otlp] processors: [batch, memory_limiter] exporters: [otlp] EOF
Run the collector
docker run -d
--name otel-collector
-p 4317:4317
-p 4318:4318
-v $(pwd)/otel-collector-config.yaml:/etc/otel-collector-config.yaml
otel/opentelemetry-collector:latest
--config /etc/otel-collector-config.yaml
Kubernetes Installation
For Kubernetes environments, use the OpenTelemetry Operator:
# Install the OpenTelemetry Operator kubectl apply -f https://github.com/open-telemetry/opentelemetry-operator/releases/latest/download/opentelemetry-operator.yaml
Create a collector configuration
cat > otel-collector.yaml << EOF apiVersion: opentelemetry.io/v1alpha1 kind: OpenTelemetryCollector metadata: name: otel-collector spec: config: | receivers: otlp: protocols: grpc: endpoint: 0.0.0.0:4317 http: endpoint: 0.0.0.0:4318
processors: batch: timeout: 1s send_batch_size: 1024 memory_limiter: check_interval: 1s limit_mib: 1500 exporters: otlp: endpoint: https://your-logit-endpoint:4317 headers: authorization: "Bearer your-logit-api-key" tls: insecure: false service: pipelines: traces: receivers: [otlp] processors: [batch, memory_limiter] exporters: [otlp]
EOF
kubectl apply -f otel-collector.yaml
Configuring Logit.io Integration
Logit.io provides native support for OpenTelemetry, making it easy to send traces from your applications:
Logit.io OpenTelemetry Endpoint
Configure your OpenTelemetry Collector to send data to Logit.io:
# Logit.io OpenTelemetry configuration
exporters:
otlp:
endpoint: https://your-logit-endpoint:4317
headers:
authorization: "Bearer your-logit-api-key"
tls:
insecure: false
timeout: 30s
retry_on_failure:
enabled: true
initial_interval: 5s
max_interval: 30s
max_elapsed_time: 300s
Authentication and Security
Secure your OpenTelemetry connection to Logit.io:
- API Key: Use your Logit.io API key for authentication
- TLS: Enable TLS for secure communication
- Network Security: Ensure proper firewall rules and network access
- Access Control: Configure appropriate access controls and permissions
Instrumenting Applications with OpenTelemetry
Once your OpenTelemetry infrastructure is set up, you can begin instrumenting your applications. The process varies by programming language, but the core concepts remain the same.
Node.js Application Instrumentation
Node.js applications can be instrumented using the OpenTelemetry JavaScript SDK:
Basic Setup
// Install required packages // npm install @opentelemetry/api @opentelemetry/sdk-node @opentelemetry/auto-instrumentations-node @opentelemetry/exporter-otlp-http
const { NodeSDK } = require('@opentelemetry/sdk-node'); const { getNodeAutoInstrumentations } = require('@opentelemetry/auto-instrumentations-node'); const { OTLPTraceExporter } = require('@opentelemetry/exporter-otlp-http');
// Initialize OpenTelemetry const sdk = new NodeSDK({ traceExporter: new OTLPTraceExporter({ url: 'http://localhost:4318/v1/traces', headers: {}, }), instrumentations: [getNodeAutoInstrumentations()], });
sdk.start();
// Your application code here const express = require('express'); const app = express();
app.get('/api/users', async (req, res) => { // This will automatically create spans for HTTP requests const users = await fetchUsers(); res.json(users); });
app.listen(3000, () => { console.log('Server running on port 3000'); });
Custom Instrumentation
const { trace } = require('@opentelemetry/api');
// Create custom spans async function fetchUsers() { const tracer = trace.getTracer('user-service');
return tracer.startActiveSpan('fetchUsers', async (span) => { try { // Add attributes to the span span.setAttribute('db.operation', 'SELECT'); span.setAttribute('db.system', 'postgresql');
// Simulate database query const users = await db.query('SELECT * FROM users'); // Add events to the span span.addEvent('users.fetched', { count: users.length, timestamp: Date.now() }); return users; } catch (error) { // Record error in span span.recordException(error); span.setStatus({ code: 2, message: error.message }); // ERROR throw error; } finally { span.end(); }
}); }
Python Application Instrumentation
Python applications can be instrumented using the OpenTelemetry Python SDK:
Basic Setup
# Install required packages
pip install opentelemetry-api opentelemetry-sdk opentelemetry-instrumentation-flask opentelemetry-exporter-otlp
from opentelemetry import trace from opentelemetry.sdk.trace import TracerProvider from opentelemetry.sdk.trace.export import BatchSpanProcessor from opentelemetry.exporter.otlp.proto.http.trace_exporter import OTLPSpanExporter from opentelemetry.instrumentation.flask import FlaskInstrumentor from flask import Flask
Initialize OpenTelemetry
trace.set_tracer_provider(TracerProvider()) trace.get_tracer_provider().add_span_processor( BatchSpanProcessor(OTLPSpanExporter( endpoint="http://localhost:4318/v1/traces" )) )
tracer = trace.get_tracer(name)
Instrument Flask application
app = Flask(name) FlaskInstrumentor().instrument_app(app)
@app.route('/api/users') def get_users(): # This will automatically create spans for HTTP requests return {'users': fetch_users()}
def fetch_users(): with tracer.start_as_current_span('fetch_users') as span: span.set_attribute('db.operation', 'SELECT') span.set_attribute('db.system', 'postgresql')
# Simulate database query users = [{'id': 1, 'name': 'John'}, {'id': 2, 'name': 'Jane'}] span.add_event('users.fetched', { 'count': len(users), 'timestamp': time.time() }) return users
if name == 'main': app.run(debug=True)
Java Application Instrumentation
Java applications can be instrumented using the OpenTelemetry Java SDK:
Maven Dependencies
<dependencies>
<dependency>
<groupId>io.opentelemetry</groupId>
<artifactId>opentelemetry-api</artifactId>
<version>1.32.0</version>
</dependency>
<dependency>
<groupId>io.opentelemetry</groupId>
<artifactId>opentelemetry-sdk</artifactId>
<version>1.32.0</version>
</dependency>
<dependency>
<groupId>io.opentelemetry</groupId>
<artifactId>opentelemetry-exporter-otlp</artifactId>
<version>1.32.0</version>
</dependency>
<dependency>
<groupId>io.opentelemetry.instrumentation</groupId>
<artifactId>opentelemetry-instrumentation-annotations</artifactId>
<version>1.32.0</version>
</dependency>
</dependencies>
Basic Setup
import io.opentelemetry.api.OpenTelemetry; import io.opentelemetry.api.trace.Tracer; import io.opentelemetry.sdk.OpenTelemetrySdk; import io.opentelemetry.sdk.trace.export.OtlpGrpcSpanExporter; import io.opentelemetry.sdk.trace.SdkTracerProvider; import io.opentelemetry.sdk.trace.export.BatchSpanProcessor;
public class OpenTelemetrySetup { public static void main(String[] args) { // Initialize OpenTelemetry SdkTracerProvider sdkTracerProvider = SdkTracerProvider.builder() .addSpanProcessor(BatchSpanProcessor.builder( OtlpGrpcSpanExporter.builder() .setEndpoint("http://localhost:4317") .build() ).build()) .build();
OpenTelemetrySdk openTelemetry = OpenTelemetrySdk.builder() .setTracerProvider(sdkTracerProvider) .buildAndRegisterGlobal(); // Get tracer Tracer tracer = openTelemetry.getTracer("my-service"); // Create spans var span = tracer.spanBuilder("my-operation") .setAttribute("custom.attribute", "value") .startSpan(); try (var scope = span.makeCurrent()) { // Your business logic here System.out.println("Executing operation..."); } catch (Exception e) { span.recordException(e); span.setStatus(io.opentelemetry.api.trace.StatusCode.ERROR); throw e; } finally { span.end(); } }
}
Advanced OpenTelemetry Configuration
Once you have basic instrumentation working, you can enhance your setup with advanced configurations for better observability and performance.
Sampling Configuration
Sampling helps control the volume of trace data sent to your observability backend:
Trace Sampling
# OpenTelemetry Collector sampling configuration processors: probabilistic_sampler: hash_seed: 22 sampling_percentage: 10.0
tail_sampling: policies: - name: error-policy type: status_code status_code: status_codes: [ERROR] decision: decision: ALWAYS_RECORD - name: slow-policy type: latency latency: threshold_ms: 1000 decision: decision: ALWAYS_RECORD - name: default-policy type: probabilistic probabilistic: sampling_percentage: 5.0
Application-Level Sampling
// Node.js sampling configuration const { NodeSDK } = require('@opentelemetry/sdk-node'); const { ParentBasedSampler, TraceIdRatioBasedSampler } = require('@opentelemetry/sdk-trace-base');
const sdk = new NodeSDK({ sampler: new ParentBasedSampler({ root: new TraceIdRatioBasedSampler(0.1), // 10% sampling remoteParentSampled: new TraceIdRatioBasedSampler(0.1), remoteParentNotSampled: new TraceIdRatioBasedSampler(0.1), localParentSampled: new TraceIdRatioBasedSampler(0.1), localParentNotSampled: new TraceIdRatioBasedSampler(0.1), }), // ... other configuration });
Span Attributes and Events
Adding meaningful attributes and events to your spans provides valuable context for debugging and analysis:
Standard Attributes
// Add standard OpenTelemetry attributes
span.setAttribute('http.method', 'GET');
span.setAttribute('http.url', 'https://api.example.com/users');
span.setAttribute('http.status_code', 200);
span.setAttribute('db.system', 'postgresql');
span.setAttribute('db.name', 'users_db');
span.setAttribute('db.operation', 'SELECT');
span.setAttribute('db.statement', 'SELECT * FROM users WHERE id = ?');
span.setAttribute('messaging.system', 'kafka');
span.setAttribute('messaging.destination', 'user-events');
span.setAttribute('messaging.operation', 'publish');
Custom Attributes
// Add custom business attributes
span.setAttribute('user.id', userId);
span.setAttribute('order.id', orderId);
span.setAttribute('payment.method', 'credit_card');
span.setAttribute('feature.flag', 'new_ui_enabled');
span.setAttribute('deployment.environment', 'production');
span.setAttribute('service.version', '1.2.3');
span.setAttribute('team.ownership', 'platform-team');
Span Events
// Add events to spans for important milestones span.addEvent('user.authenticated', { 'user.id': userId, 'auth.method': 'jwt', 'timestamp': Date.now() });
span.addEvent('database.query.executed', { 'query.type': 'SELECT', 'table.name': 'users', 'rows.affected': 1, 'execution.time.ms': 45 });
span.addEvent('cache.miss', { 'cache.key': 'user:123', 'cache.type': 'redis' });
Baggage and Context Propagation
Baggage allows you to propagate key-value pairs across service boundaries for correlation:
Setting and Using Baggage
const { baggage } = require('@opentelemetry/api');
// Set baggage in the current context const ctx = baggage.setBaggage( baggage.getCurrent(), 'user.id', '123' );
// Use the context in async operations async function processUser(userId) { const currentBaggage = baggage.getCurrent(); const userContext = baggage.setBaggage( currentBaggage, 'request.id', generateRequestId() );
return baggage.withContext(userContext, async () => { // This context will be available in all child spans const span = tracer.startSpan('process-user'); // ... processing logic span.end(); }); }
Integrating with Logit.io for Distributed Tracing
Logit.io provides comprehensive support for OpenTelemetry distributed tracing, allowing you to visualize and analyze trace data alongside your logs and metrics.
Logit.io Trace Visualization
Logit.io's trace visualization features help you understand request flows and identify performance issues:
- Trace Timeline: Visualize the complete request journey through your services
- Span Details: View detailed information about each span including attributes, events, and errors
- Service Map: See the relationships between services and their communication patterns
- Performance Analysis: Identify slow operations and bottlenecks in your system
- Error Tracking: Correlate errors across multiple services to understand root causes
Trace-to-Log Correlation
Logit.io enables correlation between traces and logs for comprehensive debugging:
Adding Trace Context to Logs
// Node.js example with trace context in logs const { trace } = require('@opentelemetry/api'); const winston = require('winston');
// Create a custom Winston transport that includes trace context class OpenTelemetryTransport extends winston.Transport { constructor(opts) { super(opts); }
log(info, callback) { const currentSpan = trace.getActiveSpan(); if (currentSpan) { const spanContext = currentSpan.spanContext(); info.traceId = spanContext.traceId; info.spanId = spanContext.spanId; }
// Send to Logit.io console.log(JSON.stringify(info)); callback();
} }
const logger = winston.createLogger({ transports: [ new OpenTelemetryTransport() ] });
// Usage app.get('/api/users', async (req, res) => { logger.info('Processing user request', { userId: req.params.id, requestId: req.headers['x-request-id'] });
// ... rest of the handler });
Python Example
import logging from opentelemetry import trace
Configure logging to include trace context
class OpenTelemetryFormatter(logging.Formatter): def format(self, record): current_span = trace.get_current_span() if current_span: span_context = current_span.get_span_context() record.trace_id = format(span_context.trace_id, '032x') record.span_id = format(span_context.span_id, '016x') return super().format(record)
Configure logger
logger = logging.getLogger(name) handler = logging.StreamHandler() handler.setFormatter(OpenTelemetryFormatter( '%(asctime)s - %(name)s - %(levelname)s - %(trace_id)s - %(span_id)s - %(message)s' )) logger.addHandler(handler) logger.setLevel(logging.INFO)
Usage
@app.route('/api/users') def get_users(): logger.info('Processing user request', extra={ 'user_id': request.args.get('id'), 'request_id': request.headers.get('X-Request-ID') }) # ... rest of the handler
Advanced Logit.io Trace Features
Logit.io provides advanced features for trace analysis and monitoring:
Trace Search and Filtering
- Trace ID Search: Find specific traces by trace ID
- Service Filtering: Filter traces by service name
- Error Filtering: Find traces with errors or specific error types
- Duration Filtering: Find slow traces or traces within specific time ranges
- Attribute Filtering: Filter by custom attributes and baggage
Trace Analytics
- Service Performance: Analyze performance metrics by service
- Error Rates: Track error rates and patterns across services
- Dependency Analysis: Understand service dependencies and communication patterns
- Capacity Planning: Use trace data for capacity planning and optimization
Best Practices for Distributed Tracing
Following best practices ensures your distributed tracing implementation provides maximum value while minimizing overhead and complexity.
Instrumentation Best Practices
Effective instrumentation requires careful planning and consistent implementation:
Span Naming Conventions
// Good span names span.setName('HTTP GET /api/users'); span.setName('Database SELECT users'); span.setName('Cache GET user:123'); span.setName('External API POST /payment');
// Avoid generic names span.setName('operation'); span.setName('function'); span.setName('process');
Attribute Naming
// Use standard OpenTelemetry attribute names span.setAttribute('http.method', 'GET'); span.setAttribute('http.url', '/api/users'); span.setAttribute('db.system', 'postgresql'); span.setAttribute('db.operation', 'SELECT');
// Use consistent naming for custom attributes span.setAttribute('business.user.id', userId); span.setAttribute('business.order.id', orderId); span.setAttribute('business.payment.method', 'credit_card');
Performance Optimization
Optimize your tracing implementation for performance and cost:
Sampling Strategies
- Head-based Sampling: Sample at the beginning of the trace to ensure complete traces
- Tail-based Sampling: Sample based on trace characteristics like errors or duration
- Adaptive Sampling: Adjust sampling rates based on system load and requirements
- Service-specific Sampling: Use different sampling rates for different services
Resource Management
- Batch Processing: Use batch processors to reduce network overhead
- Memory Limits: Configure appropriate memory limits for the collector
- Connection Pooling: Use connection pooling for database and external API calls
- Async Processing: Use async/await patterns to avoid blocking operations
Security and Privacy
Ensure your tracing implementation respects security and privacy requirements:
Data Sanitization
// Sanitize sensitive data before adding to spans function sanitizeUserData(userData) { const sanitized = { ...userData }; delete sanitized.password; delete sanitized.creditCard; delete sanitized.ssn; return sanitized; }
// Use sanitized data in spans span.setAttribute('user.data', JSON.stringify(sanitizeUserData(userData)));
Access Control
- Authentication: Use proper authentication for Logit.io access
- Authorization: Implement role-based access control for trace data
- Data Retention: Configure appropriate retention policies for trace data
- Audit Logging: Log access to sensitive trace data
Real-World Implementation Scenarios
Understanding real-world scenarios helps you implement distributed tracing effectively in your specific environment.
E-commerce Application Example
Consider an e-commerce application with multiple microservices:
Service Architecture
- API Gateway: Handles incoming requests and routing
- User Service: Manages user authentication and profiles
- Product Service: Manages product catalog and inventory
- Order Service: Handles order processing and management
- Payment Service: Processes payments and transactions
- Notification Service: Sends emails and notifications
Trace Flow Example
// API Gateway - Start the trace app.post('/api/orders', async (req, res) => { const tracer = trace.getTracer('api-gateway');
return tracer.startActiveSpan('POST /api/orders', async (span) => { try { span.setAttribute('http.method', 'POST'); span.setAttribute('http.url', '/api/orders'); span.setAttribute('business.user.id', req.user.id);
// Call User Service const user = await callUserService(req.user.id); // Call Product Service const products = await callProductService(req.body.productIds); // Call Order Service const order = await callOrderService({ userId: req.user.id, products: products, total: calculateTotal(products) }); // Call Payment Service const payment = await callPaymentService({ orderId: order.id, amount: order.total, method: req.body.paymentMethod }); // Call Notification Service await callNotificationService({ userId: req.user.id, type: 'order_confirmation', orderId: order.id }); res.json({ orderId: order.id, status: 'confirmed' }); } catch (error) { span.recordException(error); span.setStatus({ code: 2, message: error.message }); res.status(500).json({ error: 'Order creation failed' }); } finally { span.end(); }
}); });
Database and External API Tracing
Trace database operations and external API calls for complete visibility:
Database Tracing
// Database operation tracing async function getUserById(userId) { const tracer = trace.getTracer('user-service');
return tracer.startActiveSpan('Database SELECT user', async (span) => { try { span.setAttribute('db.system', 'postgresql'); span.setAttribute('db.operation', 'SELECT'); span.setAttribute('db.table', 'users'); span.setAttribute('db.statement', 'SELECT * FROM users WHERE id = $1'); span.setAttribute('db.parameters', JSON.stringify([userId]));
const startTime = Date.now(); const user = await db.query('SELECT * FROM users WHERE id = $1', [userId]); const duration = Date.now() - startTime; span.setAttribute('db.duration_ms', duration); span.setAttribute('db.rows_returned', user.rows.length); return user.rows[0]; } catch (error) { span.recordException(error); span.setStatus({ code: 2, message: error.message }); throw error; } finally { span.end(); }
}); }
External API Tracing
// External API tracing async function callPaymentService(paymentData) { const tracer = trace.getTracer('payment-service');
return tracer.startActiveSpan('External API POST /payment', async (span) => { try { span.setAttribute('http.method', 'POST'); span.setAttribute('http.url', 'https://api.payment-gateway.com/payment'); span.setAttribute('http.request_id', generateRequestId()); span.setAttribute('business.payment.amount', paymentData.amount); span.setAttribute('business.payment.method', paymentData.method);
const startTime = Date.now(); const response = await fetch('https://api.payment-gateway.com/payment', { method: 'POST', headers: { 'Content-Type': 'application/json', 'Authorization': `Bearer ${process.env.PAYMENT_API_KEY}` }, body: JSON.stringify(paymentData) }); const duration = Date.now() - startTime; span.setAttribute('http.status_code', response.status); span.setAttribute('http.duration_ms', duration); if (!response.ok) { throw new Error(`Payment API error: ${response.status}`); } return await response.json(); } catch (error) { span.recordException(error); span.setStatus({ code: 2, message: error.message }); throw error; } finally { span.end(); }
}); }
Monitoring and Alerting with Traces
Use trace data to create meaningful monitoring and alerting for your distributed systems.
Trace-Based Metrics
Extract metrics from trace data for monitoring and alerting:
Service Performance Metrics
- Response Time: Track average, p95, and p99 response times by service
- Throughput: Monitor requests per second for each service
- Error Rate: Track error rates and failure patterns
- Availability: Monitor service availability and uptime
Business Metrics
- Transaction Success Rate: Track successful vs failed transactions
- User Experience Metrics: Monitor page load times and user interactions
- Business Process Metrics: Track order completion rates, payment success rates
- Cost Metrics: Monitor costs associated with different operations
Alerting Strategies
Create alerts based on trace data to detect issues early:
Performance Alerts
# Example alert configuration for slow traces
alert: SlowTraces
expr: histogram_quantile(0.95, rate(trace_duration_seconds_bucket[5m])) > 2
for: 2m
labels:
severity: warning
annotations:
summary: "Slow traces detected"
description: "95th percentile trace duration is {{ $value }}s"
Error Rate Alerts
# Example alert for high error rates
alert: HighErrorRate
expr: rate(trace_errors_total[5m]) / rate(trace_requests_total[5m]) > 0.05
for: 1m
labels:
severity: critical
annotations:
summary: "High error rate detected"
description: "Error rate is {{ $value | humanizePercentage }}"
Conclusion
Implementing distributed tracing with OpenTelemetry provides powerful insights into your distributed systems, enabling you to understand request flows, identify performance bottlenecks, and debug complex issues effectively. By following this comprehensive guide, you can build a robust observability foundation that scales with your application.
The key to successful distributed tracing implementation is starting simple and gradually adding complexity as your needs grow. Focus on instrumenting critical paths first, then expand to cover more of your application. Remember that distributed tracing is most valuable when combined with logs and metrics to provide a complete picture of your system's behavior.
Logit.io's native OpenTelemetry support makes it easy to get started with distributed tracing and provides powerful visualization and analysis tools to help you make the most of your trace data. Whether you're just getting started with observability or looking to enhance your existing monitoring, OpenTelemetry and Logit.io provide a solid foundation for understanding and optimizing your distributed systems.
Ready to implement distributed tracing in your applications? Sign up for a free trial of Logit.io and start exploring the power of OpenTelemetry distributed tracing today.